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INTRODUCTION 
 The study of blood flow through mammalian 

circulatory system has been the subject of scientific 

research for about a couple of centuries. Like most of the 

problems of nature and life sciences, it is complex one due 

to the complicated structure of blood, the circulatory 

system and their constituent materials. The experimental 

studies and the theoretical treatments of blood flow 

phenomena are very useful for the diagnosis of a number of 

cardiovascular diseases and development of pathological 

patterns in human or animal physiology and for other 

clinical purposes and practical applications. Stenosis 

“Atherosclerosis” [Fig.1(a)] is the abnormal and unnatural 

growth on the arterial wall thickness that develops at  
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various arterial locations of the cardiovascular system under 

diseased condition. Stenosis developed in the arteries 

pertaining to brain can cause cerebral strokes and the one 

developed in the coronary arteries can cause myocardial 

infarction which leads to heart failure. Everyone starts to 

develop some amount of stenosis as they grow older. In 

some people, the condition can cause complications such as 

a heart attack or stroke. It has been reported that the fluid 

dynamical properties of blood flow through non-uniform 

cross section of the arteries play a major role in the 

fundamental understanding and treatment of many 

cardiovascular diseases. Several researchers have studied 

the blood flow characteristics due to the presence of a 

stenosis in the tapered arteries. Blood behaves like a 

Newtonian fluid when it flows through larger arteries at 

high shear rates, whereas it behaves like a non-Newtonian 

fluid when it flows through narrow arteries at low shear 

rates. In the region of narrowing arterial constriction, the 

flow accelerates and consequently the velocity gradient 

ABSTRACT  

 Clopidogrel is a cholesterol-lowering drug it can help to prevent more plaque from forming. In this present model the 

effects of Clopidogrel on viscosity of blood has been obtained. This problem of non-Newtonian and non-linear blood flow 

through a stenosed artery is solved numerically where the non-Newtonian rheology of the flowing blood is characterized by 

the generalized Power-law and Bingham plastic fluid models. The proposed model are solved and closed form expressions for 

the blood flow characteristics namely, velocity profile, volumetric flow rate, pressure gradient, resistance to flow, wall shear 

stress and apparent viscosity are derived. The effects of various parameters entering into problem are discussed with the help 

of graphs. It has been found that the wall shear stress and resistance to flow and viscosity increases with the non-Newtonian 

behavior index of the blood as well as tube radius for constant value of the stenosis height for both fluid models but these 

increases are comparatively small in Power-law fluid model. It has been concluded that the patients entangled to 

cardiovascular diseases due to blood clots can prevent by giving the regular doses of Clopidogrel in order to dilute the blood. 

This lowers the blood viscosity. Clopidogrel would be more helpful in the functioning of diseased arterial circulation. This 

work may be help in diagnosis and treatment of cardiovascular disorders as well as people working in biomedical field. 

 

Keywords: Clopidogrel, Blood flow, Bingham Plastic Fluid, Power-law Fluid Model, Resistance to Flow, Wall Shear Stress, 

Stenosis Shape Parameter. 

. 

 



Vol 4 | Issue 1 | 2014 | 35-40. 

36 | P a g e  
 

near the wall region is steeper due to the increased core 

velocity resulting in relatively large shear stress on the wall 

even for a mild stenosis. The possibility that the 

haemodynamic factors play an important role in the genesis 

and proliferation of stenosis has attracted the interest of 

researchers to study blood flow through local constrictions 

during the past few decades [1-6]. An account of the most 

of the theoretical and experimental studies, reported so far 

[7-14], The analysis of blood flow through a symmetrically 

stenosed artery has been studied by Singh [15]. 

 Sanyal and Maji [16] investigated the unsteady 

blood flow through an indented tube in presence of 

stenosis. Chakravarty and Datta [17] have performed 

rheological study on the effect of mild stenoses on the flow 

behavior of blood in a stenosed arterial segment. The 

various geometries of stenosis have been suggested by the 

researchers. The cosine-shaped geometry was considered 

and analysed with different parameters by many researchers 

like Young [7], Kapur [18], Chakravarty [19]. The power-

law and casson fluid models with cosine-shaped geometry 

were discussed by Shukla [20]. A composite shaped 

geometry of arterial stenosis was also suggested and 

investigated. The bell-shaped geometry with different fluids 

was discussed by Misra and Shit. In all of the above studies 

the shape of stenosis was considered to be symmetrical 

about the axis as well as radius of the flow cylinder. The 

radially nonsymmetric stenosis has been analysed by 

Sanyal and Maji [16], Srivastava and Saxena [21], 

Srivastava [9]. The effects of shape of stenosis on the 

resistance to blood flow through an artery has been 

investigated by Haldar [22]. Due to the presence of a new 

parameter the formulation of our model is mathematically 

more general and includes the model as a special case. In  

the  present  mathematical model,  a  problem  in  which  

blood  flow  has  been considered  symmetrical about the 

axis but non- symmetrical with respect to radial co-

ordinates with  mild  stenosed  artery  by introducing blood 

as Power-law fluid model and Bingham plastic fluid model. 

The effects of stenosis size, stenosis length, stenosis shape 

parameter on resistance to flow, wall shear stress and 

apparent viscosity have investigated.  

 

Formulation of the Mathematical Model 

 We have considered an artery having mild 

stenosis. The flow of blood is assumed to be steady, 

laminar and fully-developed. Blood is taken as a Bingham 

plastic fluid. It is assumed that stenosis is symmetrical 

about the axis but non- symmetrical with respect to radial 

co-ordinates. The mathematical expression for geometry 

can be written as, 
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where 

R0  : Radius of normal tube 

R(z)  : Radius of stenotic region 

L   : The length of the artery 

L0   : The length of the stenosis 

d   : Distance between equispaced points 

δ   : Maximum height of stenosis (δ << R0) 

m   : Parameter determining the shape of stenosis (m 

≥ 2) 

Conservation equation and boundary conditions 

 The equation of motion for laminar and 

incompressible, steady, fully-developed, one-dimensional 

flow of blood whose viscosity varies along radial direction 

in an artery reduces to: 

P 1 (r τ)
0 ,

r r z

P
0 ,

r

  
     


  

 

                                (2) 

where (z, r) are co-ordinates with z measured along the  

axis and r measured normal to the axis of the artery.The 

boundary conditions are introduced to solve the above 

equations, 

L0

u/ r = 0         at r = 0, u = 0               at r = R(z)

   is finite       at r = 0        

P = P              at z = 0, P = P              at z = L

τ

 





       (3)    

Bingham plastic fluid model 
For Bingham plastic fluid, the stress-strain relation is given 

by 

0

P
0

du
τ= τ +μ -

dr

Rdp r dp
where τ= - , τ = - ,

dz 2 dz 2

 
 
 

  
   
   

       (4) 

u     : axial velocity 

     : viscosity of fluid  

(-dp/dz)   : pressure gradient  

 

Solution of the problem

                                                                                                     

 

The expression for the velocity, u obtained as the solution 

of equation (2) subject to the boundary conditions (3) and 

equation (4), is obtained as (for RP ≤ r ≤ R(z))   
2 2 3/2 3/21/22 3/2

0 0 0 0 0

0 0 0 0 0 0

R τ R 4R τdp R r R r 1 dp R r
u=- - + - - - -

4μ dz R R μ R R 3μ 2μ dz R R

                
                
                     

   (5) 
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The constant plug flow velocity, uP may be obtained from 

equation (5) evaluated at r = RP. 

The volumetric flow rate Q can be defined as, 

R R

0 0

du
Q 2πu rdr π r dr,

dr

 
     

 
                                                                                           

(6) 

The flow flux, Q when Rp<< R (i.e., the radius of the plug 

flow region is very small as compared to the non-plug flow 

region), is calculated as 
1/2

4 3 7
4 7/2

0 0 0 0

0 0 0

R π τ π 4R π τdp R R 1 dp R
Q = +- +- -

8μ dz R 3μ R 7 μ 2μ dz R

        
        

        
                                      (7)                       

4πR dp
Q f(y),

8μ dz

 
  

 
                                                                                                                                         

(8) 

From above equation pressure gradient is written as 

follows, 

4

0

dp 8μQ
- = f(y)

dz πR
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Integrating equation (9) using the condition (3) P = P0 at z = 

0 and P = PL at z = L. We have 

 

L

4 4L 0
0

00

8μQ dz
ΔP P P

πR R(z)/R f(y(z))
        10) 

The resistance to flow is denoted by λ and defined as 

follows, 

L 0
P - P

λ =
Q

        (11)                               

The resistance to flow from equation (11) using equations 

(10) is written as, 

   
d+L0

40 0
d

0

/ /
dz
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    (12) 

where f0 is given by 

     
7/2

4 3 70 0 0
0 0 0 0

τ π 4R π τ 1 dp
f R/R +- R/R +- - R/R

3μ 7 μ 2μ dz

  
   

  
 

Following the apparent viscosity (µapp) is defined as 

follows; 

 
app 4

0

1
μ

R(z)/R f(y)


                                                                                                           

(13) 

The shearing stress at the wall can be defined as; 

R 0

r=R(z)

du
τ = τ +μ -

dr

 
 
 

                                                                                                                   

(14)  

 

RESULTS AND DISCUSSION 
 In order to have estimate of the quantitative effects 

of various parameters involved in the analysis computer 

codes were developed and to evaluate the analytical results 

obtained for resistance to blood flow,  apparent viscosity 

and wall shear stress for normal and diseased system 

associated with stenosis due to the local deposition of lipids 

have been determine. Fig.2 reveals the variation of 

resistance to flow () with stenosis size (/R0) for different 

values of flow behavior index (n). It is observed that the 

resistance to flow () increases as stenosis size (/R0) 

increases. It is also noticed here that resistance to flow () 

increases as flow behavior index (n) increases. It is seen 

from the Fig.2, Fig.3 that the ratio is always greater than 1 

and decreases as n decreases from unity. This result is 

similar with the result of Shukla, et al. 

 In Fig.3, resistance to flow () decreases as 

stenosis shape parameter (m) increases and maximum 

resistance to flow () occurs at (m = 2), i. e. in case of 

symmetric stenosis. This result is therefore consisting to the 

result of [Haldar, (20)]. It is also seen that, for /R0 = 0.1 

and L0/L = 1.0  In Fig.4 the variation of wall shear stress (τ) 

with stenosis length (L0/L) for different values of flow 

behavior index (n) has been shown. This figure depicts that 

wall shear stress (τ) increases as stenosis length (L0/L) 

increases. Also it has been seen from this graph that the 

wall shear stress (τ) increases as value of flow behavior 

index (n) increases. As the stenosis grows, the wall 

shearing stress (τ) increases in the stenotic region. It is also 

noted that the shear ratio given is greater than one and 

decreases as n decreases (n < 1). These results are similar 

with the results of Shukla, et al.. It is also seen that the 

shear ratio is always greater than one and decreases as n 

decreases. For /R0 = 0.1 the increases in wall shear due to 

stenosis is about 37% when compared to the wall shear 

corresponding to the normal artery in the Newtonian case 

(n = 1), but for n = 2/3 this increase is only 23% 

approximately. However, for /R0 = 0.2, the corresponding 

increase in Newtonian (n = 1) and non-Newtonian (n = 2/3) 

cases are 95% and 56% respectively. Fig.5 reveals the 

variation of apparent viscosity with stenosis shape 

parameter for different values of stenosis size. It may be 

observed here that the apparent viscosity decreases as 

stenosis shape parameter increases. This figure is also 

depicted that apparent viscosity decreases as stenosis size 

increases.  

 

Power-law fluid: Non-Newtonian fluid is that of power-

law fluid which have constitutive equation, 
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Where u is the axial velocity, μ is the viscosity of fluid, (-

dp/dz) is the pressure gradient and n is the flow behaviour 

index of the fluid. Solving for u from equation (15), (4) and 

using the boundary conditions (3), we have, 

C

1/n

1/ndu P
= [(r - R ) ],

dr 2μ

 
 
 

           (16) 

The volumetric flow rate Q can be defined as, 

R R

0 0

du
Q 2πu rdr π r dr,

dr
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By the help of equations (15) and 1(6) we have,  

[(1/n) 1]1/nP nπ
Q ( ) (R)

2μ (3n 1)

 
  

 

           (18) 

From equation (18) pressure gradient is written as follows, 

n

3n 1

dp (3n 1) 1
2μ Q

dz nπ (R) 
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Integrating equation (19) using the condition P = P0 at z = 0 

and P = PL at z = L. We have, 

   

n
L

L 3n+10 1 3n00
0
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The resistance to flow (resistive impedance) is denoted by λ 

and defined as follows: 

L 0
P - P

λ =
Q

                (21) 

The resistance to flow from equation (21) using equations 

(20) can write as: 

 

n d Ld L0
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When there is no stenosis in artery then R = R0, the 

resistance to flow,   

n

3n 1N
0

(3n 1) 2μ
λ Q L

nπ QR 
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From equation (22) and (23) the ratio of (0 / N) is given 

as; 

 

d L
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Now the ratio of shearing stress at the wall can be written 

as; 
3n
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N
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 Fig.6 reveals the variation of resistance to flow () 

with stenosis shape parameter (m) for different values of 

stenosis size (/R0). It is observed that the resistance to flow 

() decreases as stenosis shape parameter (m) increases and 

maximum resistance to flow () occurs at (m = 2), i. e. in 

case of symmetric stenosis. It has also been seen from this 

graph that resistance to flow () increases as stenosis size 

(/R0) increases. These results are therefore consisting to 

the result of Mishra and Verma. Fig.7 shows the variation 

of wall shear stress (τ) with stenosis size for different 

values of stenosis length (L0/L). It is clear from the figure 

that the wall shear stress (τ) increases as stenosis size and 

stenosis length increases. These results are consistent to the 

observation of Haldar. The variation of apparent viscosity 

with stenosis length (L0/L) for different values of stenosis 

size (/R0) has been depicted in Fig.8. This figure shows 

that the of apparent viscosity increases as stenosis size 

(/R0) increases. This result is similar to the results of 

Sanyal and Maji. 

 

Fig. 1(a). Atherosclerosis  

 

Fig.1(b). Stenotic Artery 

The schematic diagram of the flow is given by Fig.1(b). 
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CONCLUDING REMARKS 

 In this paper, we have studied the effects of the 

stenosis in an artery by considering the blood as Power-law 

and Bingham plastic fluid models. It has been concluded 

that the resistance to flow and wall shear stress increases as 

the size of stenosis increases for a given non-Newtonian 

model of the blood. The flow resistance decreases with 

increasing values of shape parameter „m‟ and attains its 

maximal in the symmetric stenosis case (m=2) for any 

given stenosis size. Thus the increasing value of the shape 

parameter would cause a considerable increase in the flow 

of blood. These increases are however, small due to non-

Newtonian behaviour of the blood. The apparent viscosity 

increase as stenosis size and stenosis length increases, but it 

is decreases as stenosis shape parameter increases. The 

changes are different in both the cases of fluid models.  By  

considering blood as power-law fluid model the flow 

characteristics are more favourable in comparison to 

Bingham plastic fluid model.  Thus it appears that the non-

Newtonian behaviour of blood by considering blood as 

power-law fluid model is more helpful in the functioning of 

stenosed blood vessels circulation. It has been concluded 

that the patients entangled to cardiovascular diseases due to 

the formation of blood clots can prevent by giving the 

regular doses of Clopidogrel in order to dilute the blood. 

This drug can help to prevent more plaque from forming 

and lowers the blood viscosity. Clopidogrel would be more 

helpful in the functioning of diseased arterial circulation. 

This work may help in early identification, diagnosis and 

treatment of cardiovascular disorders and also for the 

people working in the field of medical science.    
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